
72 Journal of College Science Teaching  

RESEARCH AND TEACHING

Statistics Across the Curriculum Using 
an Iterative, Interactive Approach in an 
Inquiry-Based Lab Sequence
By Alysa J. Remsburg, Michelle A. Harris, and Janet M. Batzli

How can science instructors prepare students for the statistics needed 
in authentic inquiry labs? We designed and assessed four instructional 
modules with the goals of increasing student confidence, appreciation, 
and performance in both experimental design and data analysis. Using 
extensions from a just-in-time teaching approach, we introduced concepts 
throughout a two-semester biology sequence when students could apply their 
knowledge to the inquiry labs. The modules included readings and active 
lessons that used modified “jigsaw” and immediate feedback techniques. 
Assessment based on pre- and postmodule surveys paired by individual 
student indicated improved student confidence and a rise in the number of 
students planning to take a statistics class. Student self-reported skill and 
performance were not always linked; student performance was best for the 
learning outcomes emphasized during class. Poor performance on low-
level tasks, such as formatting statistical results, demonstrated the need for 
classroom time in support of reading assignments. The four short statistics 
modules appeared to be a minimum level of instruction for preparing science 
students to apply data analysis tools appropriately in their own research. 
Using an iterative process over several months, student-driven research and 
student-centered activities were important strategies in preparing students to 
apply statistics. 

The laboratory experience is a 
foundation for science edu-
cation (Hofstein & Lunetta, 
2004). Students gain a deep-

er understanding of scientific con-
cepts if their laboratory experiences 
are based on inquiry (e.g., American 
Association for the Advancement of 
Science, 2011; Leonard, 2000). A 
fundamental component of inquiry 
labs is analyzing and interpreting 
real data. Teaching statistics explic-
itly as part of labs improves student 
understanding of data analysis and 
interpretation (Maret & Ziemba, 
1997). One challenge for instructors 
is that most students in introductory 

training in teaching statistics. To 
address this gap, we developed and 
evaluated four statistics modules to 
accompany independent projects in-
terspersed throughout two semesters 
of an honors introductory biology 
laboratory curriculum. 

Math anxiety likely contributes to 
poorer student performance in data 
analysis than in other aspects of sci-
ence courses (Hembree, 1990). Re-
views of how undergraduate students 
learn statistics in psychology (Con-
ners, McCown, & Roskos-Ewoldsen, 
1998), wildlife ecology (Burger & 
Leopold, 2001; Kendall & Gould, 
2002), and biology programs (Abrook 
& Weyers, 1996) indicate that many 
instructors have trouble motivating 
students to learn statistics. This can, 
in part, be attributed to students not 
appreciating the application of statis-
tics in their chosen major (Conners et 
al., 1998; National Research Council, 
2003). Pairing inquiry-based curricu-
lum with a statistics-across-the-cur-
riculum approach motivates students 
because they need to understand the 
tools of statistics while testing a hy-
pothesis of their own creation.

Incorporating statistics routinely in 
science courses can improve student 
motivation for learning statistics and 
improve overall quantitative literacy 
(American Association for the Ad-
vancement of Science, 2011; National 
Council of Teachers of Mathematics, 
2000; National Research Council, 

science courses have very little or 
no prior training in basic statistics. 
Even students who have taken sta-
tistics struggle to resolve statistical 
hypothesis testing with scientific hy-
pothesis testing (Goldstein & Flynn, 
2011; Maret & Ziemba, 1997). Thus 
a large gap emerges between the 
analytical tools available to students 
and their appropriate application in 
inquiry-based lab experiences. Sci-
ence lab instructors struggle to pre-
pare their students with at least func-
tional tools for experimental design, 
data analysis, and data presentation 
because of time constraints and be-
cause these faculty have little to no 
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2003). Familiarity with statistics 
early in the college curriculum also 
enables students to gain the most from 
subsequent coursework and research 
opportunities because they approach 
science in an objective, authentic way 
(Maret & Ziemba, 1997). “Ability to 
use quantitative reasoning” is consid-
ered a core competency by the Ameri-
can Association for the Advancement 
of Science (2011, p. 14) for under-
graduate biology students. Therefore, 
introductory biology instructors need 
to incorporate aspects of data analysis 
when teaching experimental design. 
This quantitative literacy allows stu-
dents to articulate hypotheses that can 
be directly evaluated on the basis of 
their current understanding of statis-
tical approaches (Kendall & Gould, 
2002). Statistics instruction within 
science courses should emphasize the 
role of statistics for minimizing back-
ground noise, defining data-collection 
protocols, explaining variability, and 
communicating results (Burger & 
Leopold, 2001; Demir, Schmidt, & 
Abell, 2010; Higgins, 1999; Kendall 
& Gould, 2002). How do instructors 
help students appreciate these power-
ful applications of statistics? Using a 
statistics-across-the-curriculum ap-
proach (Turner, 1981), we introduced 
components of experimental design 
and data analysis during 4 weeks of a 
two-semester biology lab curriculum 
so that students could apply knowl-
edge of statistics to group research 
projects.

We observed previously that if 
“plug and chug” statistical tests are 
introduced before students fully 
understand summary statistics and 
experimental design, students do 
not question the output generated 
by the statistical software. Students 
also seem to assume that statistics 
consists of only memorizing a key 
phrase or rule after the computer does 

the work. Our first learning modules 
address this problem by focusing 
on elements of experimental design 
including sampling and replication. 
We subsequently help students be-
come familiar with data they have 
generated, particularly their variation 
around the mean value and discern-
ing meaningful patterns, before they 
apply statistical hypothesis testing. 
Knowledge, comprehension, appli-
cation, and analysis from Bloom’s 
taxonomy (Bloom, Krathwohl, & 
Masia, 1956) were all included in our 
learning outcomes.

The statistics instructional mod-
ules we present are focused on 
experimental design, process of 
science reasoning, and data analysis 
within the inquiry-based labs. As 
background reading and reference, 
we provided students with a statistics 
primer to supplement the lab time al-
located to the statistics modules. The 
statistics primer served as a reference 
with explanations, examples, and 
instructions for statistics used during 
the two semesters. The lessons we 
describe here include active and group 
learning strategies to help diverse 
students practice the quantitative rea-
soning skills necessary to achieve our 
inquiry-based learning goals. 

We used a scientific teaching ap-
proach (Handelsman et al., 2004) to 
evaluate this overall research ques-
tion: To what extent do student confi-
dence and application of statistics im-
prove following exposure to statistics 
across the biology curriculum? Edu-
cational research goals were that stu-
dents who experienced the statistics 
instructional modules would have (a) 
increased confidence in experimental 
design and data analysis, (b) increased 
appreciation of the importance of 
statistics in scientific research, and 
(c) improved performance in applica-
tion of experimental design and data 

analysis concepts. Formative and 
final assessments helped us modify 
the modules in response to student 
needs. The specific student learning 
outcomes (Figure 1) address common 
misconceptions (based on instructors’ 
prior experiences) rather than a set of 
comprehensive experimental design 
or data analysis concepts. 

Methods
Classroom setting
We introduced 103 sophomore biol-
ogy undergraduates in five laboratory 
sections to statistics in a two-semester 
honors lab sequence (2006–2007) at a 
large Midwestern Research 1 Univer-
sity (Batzli, 2005). A statistics course 
was not required as a prerequisite 
or corequisite for this introductory 
biology sequence, although a first-
semester calculus course was a pre-
requisite. Institutional Review Board 
approval was granted for this educa-
tion research. The two Bio I mod-
ules focused on experimental design, 
describing variation, and graphical 
representation of data. The two Bio 
II modules integrated and expanded 
statistics concepts taught in Bio I and 
added hypothesis testing. We dis-
persed the statistics modules through-
out the two lab courses (Table 1), 
but these teaching materials could be 
applied to 4 weeks of most single-
semester science laboratory courses.

Sequencing of statistics 
modules across the curriculum
The study system for the first statis-
tics module was water quality of a 
local stream. Students were assigned 
readings in their statistics primer 
(excerpt in Appendix 1; available at 
www.nsta.org/college/connections.
aspx) about experimental design and 
summary statistics to help guide their 
laboratory assignments. Students 
completed a prelab assignment that 
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included practice questions where 
they applied concepts from the read-
ing to a set of hypothetical data. Stu-
dents gathered stream data the fol-
lowing week, sharing data across all 
five lab sections in a common Excel 
spreadsheet. Following field work, 
we began statistics instruction (Mod-
ule 1) with a discussion of summary 
statistics relevant to the data collect-
ed. In particular, students practiced 
articulating hypotheses, differentiat-
ing true replicates from nonindepen-
dent pseudoreplicates, analyzing raw 
data and distributions in histograms, 
summarizing variation in data using 
descriptive statistics, and determin-
ing meaningful graphical represen-
tations of the data (e.g., bar graphs 
with error bars, scatterplots) in Mi-
crosoft Excel using data they col-
lected in the stream. 

Modules 2 and 3 consisted of 
group research projects in which stu-

dents developed questions and tested 
their own hypotheses. Students brain-
stormed biological questions, per-
formed primary literature searches, 
presented proposals, responded to oral 
feedback on their research design, 
conducted the experiments, analyzed 
data, and summarized their research 
in a poster and a paper. Table 1  
outlines the sequence of activities and 
assessments.

The experimental design module 
(Module 2) began by presenting 
students with a number of realistic, 
flawed experiments for critique. We 
used research examples from a vari-
ety of disciplines to engage students 
with diverse interests. For example, 
students discussed whether Daphnia 
(aquatic water flea, zooplankton) 
living and developing in the same 
beaker should be treated as indepen-
dent experimental replicates. Students 
were asked to summarize and analyze 

results of their Daphnia research 
projects, but data analyses of this 
first project were limited to compari-
sons of means, standard deviations, 
standard error, and 95% confidence 
intervals. In other words, we intro-
duced the comparison of means in 
light of variation among replicates but 
saved formal hypothesis testing for 
the next statistics module (in Bio II). 
We used nongraded research pro-
posal presentations and the ensuing 
questions as a formative assessment 
of how well students could apply 
experimental design concepts to their 
Daphnia projects. Students reported 
they planned to use statistics, but their 
proposals lacked statistical terminol-
ogy, suggesting their awareness of 
specific tools was still vague. 

Module 3 in Bio II enabled students 
to use their understanding of experi-
mental design to develop enzyme ca-
talysis research hypotheses (Table 1).  
We asked students to refer to their 
statistics primer to complete a prelab 
assignment (Appendix 2; available at 
www.nsta.org/college/connections.
aspx) prior to beginning their experi-
ments and as a reference to help guide 
the design of their experiments (e.g., 
defining replicates, sampling) and the 
analysis of their own data. 

Module 4, focused on hypothesis 
testing, included a set of immediate 
feedback questions to assess infor-
mally how well students understood 
when independent and paired t-tests 
would be appropriate for different 
research scenarios (Appendix 3; 
available at www.nsta.org/college/
connections.aspx).  We used a low-
tech sticker approach that helped pre-
pare students to discuss the answers 
verbally, in the same way that “clicker 
questions” are useful for large lectures 
(Levesque, 2011). This activity also 
enabled formative assessment by both 
students and instructors.

FIGURE 1

Selected learning outcomes that were the focus of statistics modules 
for an honors introductory biology two-semester lab series. These 
outcomes formed the basis for assessments of student attitudes, 
confidence, and performance.

I. Experimental Design
A. Write research hypotheses that explicitly state the variables measured.
B. Assign experimental treatments systematically when a known factor other 

than the independent variable influences the dependent variable. 
C. Consider how well an experiment tests the direct effects of an independent 

variable.
D. Design experimental replicates that receive equivalent but independently 

applied experimental conditions. 
E. Understand how sample size affects the ability to detect a significant effect 

when there is variation in the system (signal-to-noise ratio).

II. Data Analysis
A. Recognize when paired t-tests, independent t-tests, and ANOVAs are useful.
B. Conduct independent t-tests using Excel. 
C. Interpret p-values to make appropriate conclusions regarding hypotheses.
D. Make conclusions based on the probability that data support statistical 

hypotheses. 
E. Follow the format of a scientific paper: statistics included in Methods section; 

test statistic, degrees of freedom, p-values and appropriate graphs reported in 
Results section.
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TABLE 1 

Teaching framework for four statistics modules (four classroom sessions) embedded in a two-semester 
biology laboratory series.

Time Topic Activity/ Assessment Purpose

Homework before 
Module 1

Summary statistics 
using field data

Reading assignmenta

Graded reading questions 

Understand summary statistics outcomes 
(Figure 1) 

Elicit prior knowledge and misconceptions

Module 1
40 min

Summary statistics and 
Excel 

Discuss reading question 
answers

Outline the results section of a 
scientific paper based on data

Extend understanding of summary 
statistics

Explore basic purpose of statistics; 
generate descriptive statistics and graphs 
with error bars

Module 1
80 min

Introduction of 
experimental system

Develop research proposal Engage in statistics by developing a 
hypothesis, designing an experiment, and 
proposing analysis of expected results

Homework before 
Module 2

Experimental design 
and basic data analysis

Online premodule surveyb Instructors assess prior knowledge

Module 2
30 min

Experimental design 
practice

Work in groups to identify 
experimental design flaws in 
research scenarios

Reveal common misconceptions in 
experimental design

Module 2
30 min

Experimental design 
application

Work in groups to apply 
experimental design tips 
from worksheet to research 
proposals

Apply experimental design concepts to 
group research projects

Module 2 
50 min

Formative evaluation Group presentations of 
research proposals

Instructors assess experimental design 
and use just-in-time teaching to improve 
projects

Module 3
2 hr

Introduce experimental 
system

Record data; brainstorm 
hypotheses for independent 
projects

Appreciate the role of statistics in a 
research project

Homework before 
Module 4

Experimental design 
and data analysis

Formative evaluation

Reading assignmenta

Graded reading questionsc

Extend experimental design concepts to 
new scenarios 

Elicit prior knowledge and misconceptions 

Module 4
30 min

Role of statistics, 
independent and 
paired t-tests

Discuss reading questionsc and 
extensions in groups and as a 
class 

Explain formal hypothesis testing to peers

Consider when and why to use paired two-
sample hypothesis testing

Module 4 
10 min

Paired versus 
independent t-tests

Immediate feedback questions 
posted around roomd

Apply understanding of when paired 
t-tests can be useful

Module 4 
40 min

t-test mechanics, 
introduction to 
ANOVAs

Chalk talk, group jigsaw 
questions,e and group 
presentations 

Explore and explain data analysis concepts 
(Figure 1) 

After Module 4 Conduct group 
research projects

Group research paper 
assignment

Apply data analysis

Communicate results

After Module 4 Experimental design 
and data analysis

Online postmodule surveyb Instructors assess learning gains

a Statistics primer excerpt, Appendix 1 dImmediate feedback questions, Appendix 3
bPre- and postmodule surveys, Appendix 4 eGroup jigsaw activity for t-tests, Figure 2
cExperimental design reading questions, Appendix 2
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Module 4 also attempted to engage 
students in a more thorough consider-
ation of t scores by assigning specific 
questions to small groups (Figure 2). 
Because each group presented on a 
different topic, students learned piec-
es of the whole story from each other. 
This is a simple extension of the “jig-
saw” cooperative teaching approach 
(Johnson, Johnson, & Smith, 1991). 
Students discovered and discussed the 
answers by analyzing either graphs or 
datasets in Excel and then presented 
their findings to the class. Use of a 
software package already familiar to 
many students enabled them to focus 
on statistical concepts rather than 

software or computations (Garfield, 
Hogg, Schau, & Whittinghill, 2002). 

Assessment of student 
confidence
Self-reported confidence was as-
sessed using 10 survey questions that 
asked students to rate their own skills 
in experimental design and data anal-
ysis (Appendix 4; available at www.
nsta.org/college/connections.aspx). 
The 10 questions addressed each of 
our student learning outcomes (Fig-
ure 1). Students took this survey 
before and after completing the sta-
tistics modules (Table 1). In October 
2006, 103 Bio I students took the 

online survey; 82 Bio II students re-
peated these questions in May 2007 
(ungraded both times, but with par-
ticipation points for completion). We 
used Bonferroni-corrected permuta-
tion tests, paired by student to assess 
changes in self-reported confidence 
between the two online surveys  
(n = 78, after eliminating students 
who did not complete one of the two 
surveys). Permutation tests were ap-
propriate for the data that lacked a 
normal distribution; Bonferroni cor-
rections conservatively control for 
errors from multiple comparisons. 
These and our other research ques-
tions were tested using R software 
(Version 2.4.1 R Core Development 
Team, Vienna, Austria). 

Assessment of statistics 
appreciation
To evaluate whether student appre-
ciation of statistics changed between 
the pre- and postmodule surveys  
(n = 47 students without prior statis-
tical coursework who completed this 
question both times), we compared 
responses to the survey question, 
“Do you anticipate taking statistics 
courses in the future?” We assumed 
that those students who changed 
their plans to take more statistics 
after our lab courses had developed 
an appreciation for the importance 
and scope of statistics. We never 
discussed specific statistics cours-
es with students during the biol-
ogy labs. We used McNemar’s tests 
(Argesti, 2002), paired by student, 
to compare the number of students 
whose plans changed from “no” to 
“yes” with the number of students 
whose plans changed from “yes” to 
“no.” McNemar’s test is a contingen-
cy table test for nominal data where 
the null hypothesis is that responses 
did not change from the first to sec-
ond survey. 

FIGURE 2

Laboratory activity to explore t-test concepts using jigsaw-style group 
investigations.

Instructions: Your group will be responsible for considering the answer to each 
question and then teaching the whole class, since each group has a different question. 
Within your group, you should have a facilitator, recorder, and two presenters. Take 
about 5 minutes to figure out your answers.

1. Label t = –4.56 (from prelab Question 8) on the t distribution graph and indicate 
where the corresponding p-value occurs on the distribution. Indicate where a 
t-score that has an associated p-value of 0.05 would fall on this graph. 

2. What happens to the t-score (and associated p-value) as the sample size increases? 
Use Excel to run t-tests on each of these data sets:
a) the tab called “means,” which is the lab data that you used on your prelab 

assignment, and
b) the tab called “Group 2,” which includes the same lab data plus extra replicates 

that gave similar results.

3. What happens to the t-score (and associated p-value) as the sample variance 
decreases? Use Excel to run t-tests on each of these data sets:
a) the tab called “means,” which is the lab data that you used on your prelab 

assignment, and
b) the tab called “Group 3,” which includes similar data, but the replicates are more 

similar to each other (lower variance) within the same temperature group.

4. Use the figure to explain why the degrees of freedom are important in calculating 
a p-value.

5. Use Excel (and instructions on page 11 of your statistics primer) to run an 
independent two-sample t-test on our lab data. Write a sentence with the results, 
indicating df and two-tailed test.
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Assessment of student 
performance
Two open-ended questions on the pre- 
and post-module surveys (Appendix 4) 
assessed how well students could ap-
ply three of our learning outcomes 
(Figure 1) to novel scenarios: when 
to use systematic versus random 
sampling, how indirect effects from 
uncontrolled variables can confound 
conclusions, and when to apply t-tests 
or analyses of variance (ANOVAs). 
We emphasized that students must 
complete the surveys individually 
outside of class. The second survey 
presented a different scenario from 
the first survey, and correct survey an-
swers had not been discussed in class 
at any time. We assessed completion 
of outcomes using a simple binary 
scoring rubric. We used McNemar’s 
tests, paired by student, to evalu-
ate the number of students who met 
learning outcomes on the final survey 
in comparison with the first survey. 
Bonferroni corrections for conduct-
ing three separate tests led to a sig-
nificance level of p < 0.01.

We assessed how many students 
correctly applied the stated data analy-
sis learning outcomes in their research 
papers at the end of the four statistics 
modules (May 2007). Teaching assis-
tants selected 25 group research papers 
randomly. Two of the authors (AJR and 
MAH) used a binary scoring rubric to 
record whether students achieved each 
learning outcome in these papers. 

Results 
Student confidence
After completing the two lab courses, 
students reported significantly greater 
confidence in two of the five experi-
mental design learning outcomes 
(Figure 1): distinguishing indepen-
dent replicates and determining ap-
propriate sample sizes (Figure 3; n = 
78).  Of the eight data analysis skills 

included in the survey, students re-
ported significantly higher confidence 
in six of the skills at the end of the lab 
sequence: determining when to use 
independent t-tests, paired t-tests, and 
ANOVAs; conducting independent t-
tests; interpreting statistical tests; and 
stating conclusions of experimental 
results (Figure 4; n = 78). Other spe-
cific outcomes showed no change in 
self-reported student confidence.

Statistics appreciation
We saw evidence of increased stu-
dent appreciation for the importance 
of statistics. Among students with no 
prior statistics coursework (n = 47), 
significantly more students (10) not-

ed plans to take a statistics course af-
ter exposure to our statistics modules 
than those who no longer planned 
to take a statistics course after our 
modules (one student; McNemar’s 
χ2 = 7.4, df = 1, p = 0.007). Among 
students who had already taken a 
statistics course (at any institution,  
n = 30), we found no change in their 
plans to take a statistics course. 

Student performance
Student performance improved from 
2% to 48% completion for one of the 
three learning outcomes tested on the 
pre- and postmodule surveys: identify-
ing a relevant statistical test (n = 65; 
McNemar’s χ2 = 31, p < 0.0001).  Per-

FIGURE 3 

Comparison of mean (± 1 SE) pre- and postinstruction self-reported 
skill at determining: testable hypotheses, when systematic sampling 
is helpful; appropriate experimental controls, whether experimental 
replicates are independent; and appropriate sample sizes (Figure 1). 
Asterisks (*) indicate significant differences based on permutation 
tests paired by individual student (n = 78; p < 0.005).



78 Journal of College Science Teaching  

RESEARCH AND TEACHING

centages of students correctly identi-
fying systematic sampling and exper-
imental complications from indirect 
effects both increased between the 
pre- and postmodule surveys (from 
5% to 17% and from 21% to 25%, 
respectively), although individual 
learning gains were not significant.

On final research papers, most stu-
dents correctly applied ANOVA tests, 
reached correct conclusions based on 
the data analysis, and drew appropri-
ate biological conclusions from the 
data (Table 2). For data reporting 
procedures that we did not emphasize 
in class but assigned as reading in the 
statistics primer, students did not per-
form as well. This was despite the fact 

that the data reporting tasks required 
lower order thinking according to 
Bloom’s taxonomy of educational ob-
jectives. Practice during class seemed 
to have helped students succeed at 
the higher order learning outcomes 
assessed in their papers: selecting 
statistical tests and making conclu-
sions based on statistics.

Finally, anecdotal observations by 
the instructors of these lab courses 
contributed information about stu-
dents’ progress during the year. 
Students seemed to develop an abil-
ity to ask testable and sophisticated 
research questions as they began to 
understand more sophisticated ex-
perimental design and data analysis. 

Unfortunately, we also observed that 
students in research groups often split 
up aspects of the research so that not 
all students practiced all aspects of 
experimental design and analysis. 
Thus, individual-based assessment 
and accountability is important.

Discussion
Our three education research goals 
for the statistics modules were 
achieved: improving student con-
fidence, appreciation of statistics, 
and performance on at least some 
of the learning outcomes. We docu-
mented greater appreciation of sta-
tistics on the basis of significant 
changes in students’ plans to take a 
statistics course. According to pre- 
and postmodule surveys to assess 
student confidence, self-reported 
skills in two of five experimental de-
sign outcomes and six of eight data 
analysis outcomes improved signifi-
cantly. The absence of significantly 
improved student confidence for two 
data analysis outcomes and three ex-
perimental design outcomes was as-
sociated with a perception of “mod-
erate” to “high” skill levels in these 
outcomes even before the statistics 
learning modules. Most of these 
honors biology students apparently 
thought they already had sufficient 
experience with testable hypotheses, 
systematic sampling, statistical sig-
nificance, and graph selection from 
high school science classes. 

Self-reported skills do not always 
match assessed performance of those 
skills. Our final open-ended ques-
tions to assess student performance 
indicated that only 17% of students 
achieved the learning outcome of 
recognizing the need for systematic 
sampling, and only 25% of students 
achieved the outcome of controlling 
for indirect effects in experimental 
design. Nonetheless, their pre- and 

FIGURE 4 

Comparison of mean (± 1 SE) pre- and postinstruction self-reported 
skill at conducting independent and paired t-tests, conducting 
ANOVAs, interpreting statistical results, determining statistical 
significance, drawing conclusions, and selecting an appropriate graph 
to present data (Figure 1). Asterisks (*) indicate significant differences 
based on permutation tests paired by individual student (n = 78;  
p < 0.005).
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postmodule surveys indicated high 
confidence in these experimental 
design skills. When students assessed 
their own skills, they missed the full 
scope of the experimental design pro-
cess. Performance scores were likely 
low because the open-ended scenario 
questions did not provide clues about 
relevant concepts, and they required 
higher level thinking (Crowe, Dirks, 
& Wenderoth, 2008). However, 
formal survey question validation 
may have improved the clarity of 
the assessment questions. We did not 
grade students on their answers to 
these questions because we wanted 
to avoid cheating temptations, but it 
is possible that students may not have 
been motivated to do their best work. 

Student performance in recogniz-
ing statistically significant trends 
in data sets showed improvement, 
whereas self-reported surveys sug-
gested no change due to moderately 
high initial confidence for this skill. 
Confronting a scenario in which they 
had to apply the concept was much 
more challenging than students an-
ticipated when summarizing their 
own skills. Only 2% answered this 
question correctly on the premodules 
survey, whereas 48% answered cor-
rectly on the postmodule survey.

Two major factors likely account 
for the more modest improvement in 
experimental design outcomes com-
pared with larger improvements in 
data analysis skills documented here. 
First, students have had exposure to 
some aspects of experimental design 
and graph selection since their science 
education in primary grades. This 
may lead to higher confidence and 
greater challenges with misconcep-
tions. Second, experimental design 
includes less prescribed concepts than 
specific statistical tests and requires 
higher level critical thinking. For 
instance, experimental design for an 

ecological field-based experiment 
shares some basic principles with 
experimental design for an experi-
ment in cellular biology, but there 
are also some context-specific aspects 
that are unique and require creative, 
critical thinking to diagnose potential 
confounding variables and aspects of 
time, development, and the environ-
ment. Critical thinking is a notori-
ously difficult skill for students to 
achieve because students are less able 
to appreciate their deficiencies in this 
nonprescriptive process than they are 
to appreciate deficiencies in specific 
knowledge (Halpern, 2002). Thus 
pretests to identify misconceptions 
about experimental design can be very 
useful in engaging students to relearn 
this process in progressively more 
sophisticated contexts while they are 
developing their own questions and 
experiments. Because we wanted to 
use the survey questions for a post-

teaching assessment, we did not re-
turn the initial survey to students with 
grades and comments. This likely 
would have helped students identify 
and correct their own weaknesses 
prior to beginning the subsequent 
experimental design modules. 

Integrating statistics instruction in 
multiple contexts across the curricu-
lum proved manageable and effective. 
Sequencing and lag times between 
our modules allowed students to 
focus first on variations in data as 
they developed experimental design 
skills, followed by hypothesis testing. 
This provided a sequence of learning 
so that students could build on prior 
skills and appreciate a need for more 
statistical training. The iterative na-
ture of statistics instruction—through 
lab activities, homework assignments, 
and statistics readings—helped guide 
students through their inquiry-based 
labs. Focusing on experimental design 

TABLE 2 

Assessment of data analysis learning outcomes in final student 
research papers. 

Criteria for research paper Sample 
sizea

Proportion 
correct

Bloom’s levelb

Recognize when ANOVA is 
useful

21 0.810 Application

Appropriate graph with 
variation around mean

25 0.880 Application

Reporting of ANOVA includes 
F, df, p

17 0.353 Knowledge

Reporting of t-test includes t, 
df, 1- or 2-tailed, p

18 0.333 Knowledge

Correct conclusion from 
p-value

25 0.920 Comprehension

Logical biological conclusion 
from data

25 0.840 Analysis

aSample sizes were smaller for some of the outcomes recorded because some 
statistical tests were not applicable to all student projects, depending on the nature 
of the student hypothesis tested.
bBloom’s taxonomy of educational objectives (Bloom et al., 1956).
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and data analysis during 4 weeks of 
the two-semester sequence appeared 
to be a minimum time commitment 
to help students achieve most of our 
learning outcomes. Homework as-
signments and jigsaw-style classroom 
instruction helped us reduce class 
time spent on statistics, which was 
desirable because of so much biology 
content deemed essential and so little 
student patience for “math”-related 
instruction. Perhaps most important, 
we also observed that students were 
motivated to learn statistical tools 
because of the immediate and relevant 
application to their own independent 
research data sets.

Improvements to science cur-
riculum ideally include a system of 
coordinated prerequisite or corequi-
site statistics courses (Marsteller et 
al., 2010), but additional courses may 
not lead to students correctly applying 
their knowledge to inquiry science 
labs. Our results suggest that giving 
students assigned readings and the 
opportunity to apply statistics during 
science labs leads to less satisfactory 
learning gains than adding active 
learning statistics modules as part of 
the lab, similar to findings by Sirum 
and Humburg (2011). In the inquiry-
based labs, where students developed 
and tested their own hypotheses, stu-
dents were motivated to make careful 
decisions about replicates, sampling 
design, and relevant statistical tests. 

As instructors, we also found that 
implementing this authentic process 
of science required extra time for 
teaching students how to use Micro-
soft Excel software for graphing and 
data analysis. A drop-in consulting 
session as students were analyzing 
their own data worked well. Tools on-
line have made it easier for students to 
conduct statistical tests, but arranging 
and graphing data still require skills 
in Excel. Frequent updates to the soft-

ware add to this learning curve, which 
some students respond to more readily 
than others. Excel applications could 
be added more explicitly to prelab 
assignments and learning modules.

Conclusion and implications 
Successes and challenges from these 
statistics modules can inform science 
instructors who commonly struggle 
with the need for statistics support 
in their labs. Further research on ef-
fectiveness of the teaching should 
include more qualitative data. We 
observed anecdotally that motiva-
tion to learn statistics was enhanced 
through the timing of four modules 
presented when students needed them 
for the inquiry labs; documenting this 
change in motivation level would be 
an interesting avenue for future stud-
ies. Teaching concepts of variation 
among replicates prior to hypothesis 
testing helped students develop quan-
titative reasoning prior to application 
of statistical tools. Active lessons 
were useful in engaging and reveal-
ing misconceptions. The straightfor-
ward learning outcomes that relied 
exclusively on readings and home-
work were not met nearly as well as 
learning outcomes supported with 
face-to-face lab instruction. Students 
demonstrated relatively high confi-
dence in their experimental design 
abilities but much room for improve-
ment in some design considerations 
that require critical thinking such as 
systematic sampling. Specific learn-
ing outcomes that were the focus of 
these modules were designed to ad-
dress common challenges observed in 
inquiry labs, although Excel software 
skills should be added to this list of 
common challenges. A limited num-
ber of outcomes enabled us to pres-
ent the statistics modules during four 
short lessons across the two courses. 
Devoting more science time to sta-

tistics and coordinating across more 
courses is always challenging but 
beneficial. ■
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